Bayes' theorem

出自KMU Wiki

(修訂版本間差異)
跳轉到: 導航, 搜索

Guhjy (對話 | 貢獻)
(新頁面: *T (theory: disease or diagnosis) *E (evidence): symptom, sign or finding *P(T): prevalence (prior or pre-test probability) of the disease *P(¬T): probability of no disease *P(E): pro...)
下一個→

當前修訂版本

  • T (theory: disease or diagnosis)
  • E (evidence): symptom, sign or finding
  • P(T): prevalence (prior or pre-test probability) of the disease
  • P(¬T): probability of no disease
  • P(E): probability of the evidence
  • Conditional probabilities
    • P(E|T): sensitivity of the evidence
    • P(E|¬T): "1-specificity" of the evidence
    • P(T|E): posterior or post-test probability of T given E
  • P(E|T) x P(T)=P(E and T), probability that both E and T are true
  • P(E|T) x P(T)+P(E|¬T) x P(¬T)]=P(E), probability of the evidence
  • Likelihood ratio (LR)
  • LR for a positive result = true-positive rate / false-positive rate
  • LR for a negative result = false-negative rate / true-negative rate
    • True-positive rate = sensitivity
    • False-positive rate = 1-specificity
    • False-negative rate = 1-sensitivity
    • True-negative rate = specificity
  • Odds=P(T)/P((¬T)
  • Thus, Bayes' theorem tells us that post-test odds = pre-test odds x likelihood ratio